The undecidability of profiniteness

Anvar Nurakunov and Michał Stronkowski

National Academy of Sciences of the Kyrgyz Republic Warsaw University of Technology

TACL Nice, June 2019

Topological algebras

 $\underline{algebra} = set + (finitely many) finitary operations$

 $\frac{topological\ algebra}{continuous\ operations} = topological\ space\ +\ (finitely\ many)\ finitary$

A topological space is <u>Boolean</u> if it is Hausdorff, compact, totally disconnected.

Examples of Boolean topological spaces.

- ▶ 1-point compactification of discrete spaces: $(X \cup \{\infty\}, \mathcal{T})$ X a set, $\infty \notin X$, $O \in \mathcal{T}$ iff $O \subseteq X$ or $(\infty \in \mathcal{T} \text{ and } X O \text{ is finite})$.
- Cantor space, or more generally
- ▶ a closed subspace of $\prod_{i \in I} (X_i, \mathcal{P}(X_i))$, where X_i are finite

Fact: All Boolean topological spaces are as the last one.

Profinite algebras

A topological algebra ${\bf A}$ is <u>profinite</u> iff it is an inverse limit of finite algebras.

Fact

 \boldsymbol{A} is profinite iff it is a closed subalgebra of a product of finite algebras $\boldsymbol{A} \in S_CP(\text{finite algebras})$

Why profinite algebras?

In language theory (of words or trees):

In profinite algebras we may do implicit limit operations (like Kleene's *).

It is crucial for defining varieties of rational languages.

In Galois theory:

Every profinite group is isomorphic to Gal(L/K), i.e., to a group of all field automorphisms of L which fixes elements of K.

Why profinite structures?

In natural dualities:

Schizophrenic object: **A** - a finite algebra, \mathbf{A}_{τ} a dual, essentially the same object.

(Clark, Davey and others)

Sometimes we have a duality

$$SP^+(\mathbf{A}) \quad \rightleftarrows \quad S_CP(\mathbf{A}_{\tau}).$$

Examples:

- ▶ Stone duality: **A** 2-element Boolean algebra, \mathbf{A}_{τ} 2-element set.
- ▶ Restricted Pontryagin duality: $\mathbf{A} = \mathbb{Z}_m$, $\mathbf{A}_{\tau} = \mathbb{Z}_m$.
- Priestley duality: A 2-element bounded distributive lattice,
 A_τ 2-element chain (as an ordered set).

A general problem in duality theory

All objects in the dual category $S_CP(\mathbf{A}_{\tau})$ are profinite. How to describe them?

- Stone duality: Just Boolean topological spaces.
- Restricted Pontryagin duality: Boolean topological abelian groups of exponent m.
- Priestley duality: Priestley spaces not definable in FO-logic among Boolean topological ordered sets (Stralka and others)!

More examples

- ► Every Boolean topological group is profinite
- ▶ Every Boolean topological semigroup is profinite
- Every Boolean topological ring is profinite
- Every Boolean topological distributive lattice is profinite
- Every Boolean topological Heyting algebra is profinite

More examples

- Every Boolean topological group is profinite
- ► Every Boolean topological semigroup is profinite
- Every Boolean topological ring is profinite
- Every Boolean topological distributive lattice is profinite
- Every Boolean topological Heyting algebra is profinite

But

- ▶ $(\mathbb{N}, x \mapsto \max(x 1, 0))$, with a topology given by one-point compactification of $\mathbb{N} \{0\}$, is *not* profinite
- Every infinite subdirectly irreducible algebra is not profinite

Why?

Why there are so many profinite algebras?

FDSC

 T_x the set of terms $t(x, \bar{p})$ with a distinguished variable x. For an eqivalence θ on A let $syn(\theta)$ be a largest congruence on A contained in θ .

Definition

A class $\mathcal K$ of algebras has finitely determined syntactic congruences (FDSC) if there is a finite subset F of $\mathcal T_x$ for every $\mathbf A \in \mathcal K$ and every eqivalence θ on A we have

$$\operatorname{syn}(\theta) = \{(a,b) \in A^2 \mid (\forall t(x,\bar{p}) \in \overline{F}, \ \bar{c} \in A^*) \ (t(a,\bar{c}),t(b,\bar{c})) \in \theta\}.$$

Intuition: is FDSC is a form of a restriction on defining principal congruences. It is equivalent to the term finite definability of principal congruences (TFPC).

Standard classes

A class $\mathcal K$ of algebras (quasivariety, variety) is <u>standard</u> if every Boolean topological algebra with the algebraic reduct in $\mathcal K$ is an inverse limit of finite algebras from $\mathcal K$.

Fact

A variety $\mathcal V$ is standard iff every Boolean topological algebra with the algebraic reduct in $\mathcal V$ is profinite.

Theorem (Clark, Davey, Freese, Jackson, and many others with weaker versions)

Let ${\cal K}$ be a class closed under taking homomorphic images. If ${\cal K}$ has FDSC, then it is standard.

Examples of varieties with FDSC

- varieties of groups
- varieties of semigroup
- varieties rings
- the variety of distributive lattices
- varieties of Heyting algebras
- finitely generated congruence distributive varieties (Wang)

An even more general problem

Is there a way to decide whether a given class of algebras in standard or has FDSC?

Given a finite axiomatization

Theorem (Jackson '08)

There is no algorithm to decide if a given finite set of identities defines a standard variety or a variety with FDSC.

Given a finite generator: our results

Theorem

There is no algorithm to decide if a given finite algebra of finite type generates a standard variety.

Theorem

There is no algorithm to decide if a given finite algebra of finite type generates a variety with FDSC.

Theorem

There is no algorithm to decide if a given finite algebra of finite type generates a variety $\mathcal V$ such that the class of profinite algebras with the algebraic reducts in $\mathcal V$ is FO-axiomatizable.

Challenge

How about quasi-varieties?

It is relevant to duality theory.

Main tool

Theorem (McKenzie)

There is an effective procedure which assigns to each Turing machine $\mathcal T$ the algebra $A(\mathcal T)$ s.t.

- ▶ $\mathsf{HSP}(\mathsf{A}(\mathcal{T}))$ has finite residual bound if \mathcal{T} halts.
- ▶ A particular infinite subdirectly irreducible algebra \mathbf{Q}_{ω} (up to term equivalence) is in HSP(A(\mathcal{T})) if \mathcal{T} does not halt.

Consequently, there is no algorithm to decide if a given finite algebra of a finite type generates a variety with a finite residual bound.

Main tool

Theorem (Moore)

There is an effective procedure which assigns to each Turing machine $\mathcal T$ the algebra $\mathsf A'(\mathcal T)$ s.t.

- ► HSP(A'(T)) has DPSC if T halts.
- ▶ \mathbf{Q}_{ω} (up to term equivalence) is in HSP(A'(\mathcal{T})) if \mathcal{T} does not halt.

Consequently, there is no algorithm to decide if a given finite algebra generates a variety with DPSC.

Fact

 \mathbf{Q}_{ω} admits a Boolean topology. Thus $\mathsf{HSP}(\mathsf{A}(\mathcal{T}))$ and $\mathsf{HSP}(\mathsf{A}'(\mathcal{T}))$ are *not* standard when \mathcal{T} does not halt.

Defining principal congruences

A <u>congruence formula</u> is a pp-formula (existentially quantified conjunction of atomic formulas) $\pi(u, v, x, y)$ such that

$$\models (\forall u, v, x) \ \pi(u, v, x, x) \rightarrow u \approx v$$

 $\mathcal V$ has <u>definable principal congruences</u> (DPC) if there is a *finite* set Π of congruence formulas such that for every $\mathbf A \in \mathcal V$ and $a,b,c,d \in A$ we have

$$(c,d) \in \operatorname{cg}(a,b)$$
 iff $(\exists \pi \in \Pi) \mathbf{A} \models \pi(c,d,a,b)$.

Fact

FDSC is a weakenings of DPC.

There are other weakenings of DPC.

Defining principal subcongruences

Definition (Baker, Wang)

 $\mathcal V$ has definable principal subcongruences (DPSC) if there is a *finite* set Π of congruence formulas such that for every $\mathbf A \in \mathcal V$ and $a,b\in A,\ a\neq b$, there are $c,d\in A,\ c\neq d$, s.t.

$$(\exists \pi \in \Pi) \mathbf{A} \models \pi(c, d, a, b)$$

and for every $e, f \in A$ we have

$$(e,f)\in \operatorname{cg}(c,d)$$
 iff $(\exists \pi\in\Pi) \mathbf{A}\models \pi(e,f,c,d).$

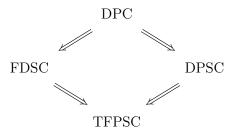
Theorem (Baker, Wang)

Every finitely generated congruence distributive variety has DPSC and, consequently, is finitely axiomatizable.

Question

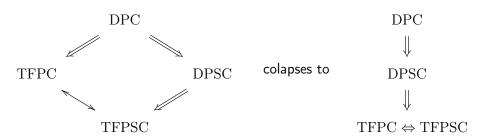
Is there any connection between FDSC and DPSC?

Obviously



TFPCS - obvious generalization od FDSC ans DPSC.

Main new result



Main corollary

Corollary

For a Turing machine \mathcal{T} let $A'(\mathcal{T})$ be the algebra from Moore's theorem.

- ▶ If \mathcal{T} halts, then $V(A'(\mathcal{T}))$ has FDSC.
- ▶ If $\mathcal T$ does not halt, then the class of profinite algebras with the algebraic reducts in $V(A'(\mathcal T))$ is not axiomatizable by a set of FO-sentences. Hence $V(A'(\mathcal T))$ is not standard and does not have FDSC.

The end

This is all

Thank you!